

ATTRIBUTE-VALUE CHAIN

A STATISTICAL TECHNIQUE FOR EXTERNAL MAPPING

1/33

SUMMARY

1. INTRODUCTION TO THE METHODOLOGY

- Product knowledge
- Product attributes
- Consumer's personal values

2. METHODOLOGY

- Aim of the analysis
- Results of the analysis
- 3. PHASES OF ANALYSIS
 - DERBI case study
 - Explanation of each phase
 - Building of the cognitive map (Attribute-Value Chain)

1. INTRODUCTION TO THE METHODOLOGY

PRODUCT'S KNOWLEDGE

Consumers perceive products as a combination of:

- **ATTRIBUTES** (or features)
- **PERSONAL VALUES** that consumers try to satisfy by using or buying the product

PRODUCT'S ATTRIBUTES

• Attributes are inside every product

- Attributes correspond to features through which every product could be described
 - For example: colour, shape etc.

PRODUCT'S ATTRIBUTES

ATTRIBUTES belong to different types :

- ABSTRACT ATTRIBUTES: they represent the subjective, intangible features of a product
 For example: comfort of a scooter
- **CONCRETE ATTRIBUTES**: they represent the physical, tangible features of a product For example: colour of a scooter

EXAMPLE: PRODUCT ATTRIBUTES

PERSONAL VALUES

Values are mental representations of **important personal objectives or needs** that customers want to satisfy by using or purchasing the product

For example : what do you want from life?

PERSONAL VALUES

- Values are stable, because they are longlife objectives
- To **emotional level**, values drive consumers to choose in a specific way

2. METHODOLOGY

AIM OF THE ANALYSIS

The aim of the analysis is to:

 link each product attribute with one or more consumer's personal values

 represent in a cognitive map attributes, values and links between them

13/33

ATTRIBUTES-VALUE CHAIN: WHAT IS IT?

ATTRIBUTES-VALUE CHAIN: METHODOLOGY

Is based on a questionnaire and needs 4 steps:

- 1. Definition of the target sample
- 2. Compilation of the questionnaire
- 3. Data statistical analysis
- 4. Building of the cognitive map (Attribute-Value Chain)

QUESTIONNAIRE SESSION

The questionnaire is compiled by Derbi's possible end-users. It is structured in **four sections**:

- 1. Identifying information
- 2. Selection of a macro-category of product's attributes (performances, look/design, service or comfort)
- 3. Evaluation of the selected attributes' macro-category
- 4. Evaluation of several personal values (independently of the product)

Section 1: IDENTIFYING INFORMATION

Answer to the following questions:

- Age [.....]
 Sex [M] [F]
- Job [.....]

Here are indicated four categories for the product. Order these categories by assigning them a score from 1 to 4 in ground of your consideration.

 $(4 = \max. \text{ score}).$

- PERFORMANCE
- LOOK/DESIGN
- SERVICE
- COMFORT

Section 3: EVALUATION OF THE SELECTED ATTRIBUTES' MACRO-CATEGORY

If you gave maximum score to PERFORMANCE category, then answer to the following questions, marking the box that shows the desired score

The scores indicate respectively:

EXAMPLE: SCOOTER cat. PERFORMANCE

- How much do you care for **operating-range**? Operating-range: km covered without refuelling
- How much do you care for *road-holding*? [0] [1] [2] [3] [4] [5] Road-holding: capacity of remaining adherent to the ground
- How much do you care for *reliability*?

[0] [1] [2] [3] [4] [5]

[0] [1] [2] [3] [4] [5]

Reliability: component life-time; preservation of declared performance

Section 4: EVALUATION OF THE PERSONAL VALUES

- We have chosen **20 personal values** which could be considered as common values of human being
- The potential end-user evaluate each one of this values giving them a **score** (from 0 to 5)
- These values are independent from the product

Section 1: EXAMPLE

- How much do you care for *ambition*? [0] [1] [2] [3] [4] [5]
- How much do you care for *calm and relax*?
- How much do you care for *imagination*?

[0] [1] [2] [3] [4] [5]

[0] [1] [2] [3] [4] [5]

• How much do you care for *fun*?

[0] [1] [2] [3] [4] [5]

DATA STATISTICAL ANALYSIS

Statistical analysis needs two steps:

- 1. Identification of the most meaningful attributes and values, with relative weight
- 2. Identification of the relations between the elements previously selected

1st STEP: IDENTIFICATION OF ATTRBUTES AND VALUES

- Using canonical correlation analysis it is possible to identify the values more correlated with product attributes
- On the contrary, all attributes are taken into consideration

1st STEP: IDENTIFICATION OF ATTRBUTES AND VALUES

The sum of the scores in each questionnaire gives the relative weight of each value and attribute.

AMBIZIONE	CALM / RELAX	IMAGINATION	FUN	STATUS	SENSE OF BELONGING	TRUST	FREEDOM	INTEREST FOR OTHER PEOPLE	CURIOSITY	HAPPYNESS	RESPONSABILITY	Score in a questionnaire
2	2	0	0	0	0	0	0	1	0	2	2	
2	1	3	3	2	3	3	4	3	1	2	3	1
3	4	5	5	5	4	4	5	5	4	5	5	Sum of the scores
124	127	126	176	132	144	167	166	126	136	168	157	(RELATIVE WEIGHT)

2nd STEP: IDENTIFICATION OF THE RELATIONS

Looking the statistical matrix that comes from canonical correlation:

For example:	IMMAGINAZI ONE	DIVERTIMEN TO	STATUS	FIDUCIA	FELICITA' SODDISFAZI ONE	SICUREZZA	
	LINEA	0,4	0,3	0,2	0,3	0,3	0,2
	IMMAGINE	0,4	0,3	0,4	0,2	0,5	0,2
Relation value between	MARCA	0,1	0,0	0,0	0,1	0,2	0,1
attribute and value	DECORAZIONI	0,0	0,3	0,0	0,1	0,1	0,1
(1=maximum correlation)	DIMENSIONI	0,3	0,3	0,3	0,3	0,4	0,1
	COLORE	0,1	0,1	0,1	0,1	0,3	0,1

BUILDING OF THE COGNITIVE MAP

For example, we propose the cognitive map for 'Performance' category of a Derbi scooter

THE COGNITIVE MAP

Weak relationships

Weak relationships Average relationships

Weak relationships Average relationships Strong relationships

CONTACTS:

Alberto F. De Toni: detoni@uniud.it